Ecuaciones cuadráticas: Dibujando parábolas
Dibujar parábolas
Hemos visto que la gráfica de una cuadrática es una parábola. También hemos visto cómo los puntos de intersección con los ejes, el vértice y otros puntos con valores particulares de #x# de la parábola se pueden calcular. A partir de estos valores calculados podemos dibujar fácilmente la gráfica de una cuadrática.
Procedimiento para dibujar una parábola
Procedimiento | geogebra plaatje | |
Dibujaremos la gráfica de una cuadrática. | ||
Paso 1 | Determina el punto de intersección con el eje #y#. | |
Paso 2 | Determina el vértice. | |
Paso 3 | Determina los puntos de intersección con el eje #x#, si los hay. | |
Paso 4 | Sustituye los valores de #x# en la fórmula de tal manera que tengamos al menos 4 puntos que podamos dibujar. | |
Paso 5 | Dibuja estos puntos en el sistema de coordenadas y conéctalos mediante una parábola fluida. |
\[y=x^2+2\cdot x-6\]
Dibuja la intersección con el eje #y#, el vértice y las intersecciones con el eje #x#.
Los puntos rojos son los cuatro puntos de la pregunta. Estos se calculan de la siguiente manera:
La fórmula ya está escrita en la forma de #a \cdot x^2+b \cdot x +c# con #a =1#, #b=2# y #c=-6#. Se observa como #a>0# la gráfica es una parábola que abre hacia arriba.
La intersección con el eje #y# es igual al valor de la constante en la fórmula cuadrática, que es igual a #-6#. Eso significa que las coordenadas del punto de intersección con el eje #y# son #\rv{0,-6}#.
El valor de #x# del vértice está dado por #x=-\dfrac{b}{2 \cdot a}# y es igual a:
\[\begin{array}{rclrl}
x&=& -\dfrac{2}{2 \cdot 1} &&\phantom{xxx}\color{blue}{\text{fórmula ingresada}}\\
&=& -1 &&\phantom{xxx}\color{blue}{\text{simplificado}}\\
\end{array}\]
El valor de #y# del vértice se calcula ingresando #x=-1# en la fórmula. Lo que da:
\[\begin{array}{rclrl}
y&=& \left(-1\right)^2 +2 \cdot -1 -6
&&\phantom{xxx}\color{blue}{\text{fórmula ingresada}}\\
&=& -7 &&\phantom{xxx}\color{blue}{\text{calculado}}\\
\end{array}\]
Las coordenadas del vértice son: #\rv{-1,-7}#.
Las intersecciones con el eje #x# son los puntos que corresponden a #y=0#.
\[\begin{array}{rcl}
x^2+2\cdot x-6 &=& 0 \\&&\phantom{xxx}\color{blue}{\text{la ecuación que se debe calcular}}\\
x=\dfrac{-{2}-\sqrt{2^2-4 \cdot 1 \cdot -6}}{2 \cdot 1} &\vee& x=\dfrac{-{2}+\sqrt{2^2-4 \cdot 1 \cdot -6}}{2 \cdot 1} \\&&\phantom{xxx}\color{blue}{\text{fórmula cuadrática ingresada}}\\
x=-\sqrt{7}-1 &\vee& x=\sqrt{7}-1 \\&&\phantom{xxx}\color{blue}{\text{calculado}}\\
\end{array}\]
Las coordenadas de las intersecciones con el eje #x# son: #\rv{-\sqrt{7}-1,0}# y #\rv{\sqrt{7}-1,0}#. Para dibujar el punto en la gráfica, tenemos que escribir las coordenadas como números decimales (redondeado a 1 decimal). Eso da: #\rv{-3.6,0}# en #\rv{1.6,0}#.
Los cuatro puntos de la gráfica son: #\rv{0,-6}#, #\rv{-1,-7}#, #\rv{-\sqrt{7}-1,0}# y #\rv{\sqrt{7}-1,0}#.
Los puntos solicitados están conectados por una curva fluida en la figura: la parábola que abre hacia arriba está dada por la fórmula.
Or visit omptest.org if jou are taking an OMPT exam.